An Optimal EEG-based Emotion Recognition Algorithm Using Gabor Features
نویسندگان
چکیده
Feature extraction and accurate classification of the emotion-related EEG-characteristics have a key role in success of emotion recognition systems. In this paper, an optimal EEG-based emotion recognition algorithm based on spectral features and neural network classifiers is proposed. In this algorithm, spectral, spatial and temporal features are selected from the emotion-related EEG signals by applying Gabor functions and wavelet transform. Then neural network classifiers such as improved particle swarm optimization (IPSO) and probabilistic neural network (PNN) are developed to determine an optimal nonlinear decision boundary between the extracted features from the six basic emotions (happiness, surprise, anger, fear, disgust and sadness). The best result is obtained when Gabor-based features and PNN classifier are used. In this condition, our algorithm can achieve average accuracy of 64.78% that can be used in brain-computer interfaces systems. Key-Words: electroencephalogram, emotion recognition, wavelet transform, Gabor functions, improved particle swarm optimization (IPSO), probabilistic neural network (PNN)
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملتشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملEEG-Based Emotion Recognition Using Frequency Domain Features and Support Vector Machines
Information about the emotional state of users has become more and more important in human-machine interaction and braincomputer interface. This paper introduces an emotion recognition system based on electroencephalogram (EEG) signals. Experiments using movie elicitation are designed for acquiring subject’s EEG signals to classify four emotion states, joy, relax, sad, and fear. After pre-proce...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کامل